Abstract

Sodium-calcium exchange across plasma membrane is regulated by intracellular calcium ions. The sodium-calcium exchanger (NCX1) is activated by successive saturation of numerous Ca(2+)-binding sites located in the intracellular loop of the protein. The progressive saturation of the binding domain CBD12 by Ca(2+) results in a series of conformational changes of CBD12 as well as of entire NCX1 molecule. Like other soluble and membrane Ca(2+)-binding proteins, NCX1 can also be regulated by Mg(2+) that antagonises Ca(2+) at the level of divalent cation-binding sites. This chapter summarises data on Mg(2+) impacts in the cells. Regulatory action of Mg(2+) on intracellular Ca(2+)-dependent processes can be achieved due to changes of its cytoplasmic level, which take place in the range of [Mg(2+)](i) from 0.5 to 3 mM. Under normal conditions, these changes are ensured by activation of plasmalemmal Mg(2+) transport systems and by variations in ATP level in cytoplasm. In heart and in brain, some pathological conditions, such as hypoxia, ischemia and ischemia followed by reperfusion, are associated with an important increase in intracellular Ca(2+). The tissue damage due to Ca(2+) overload may be prevented by Mg(2+). The protective actions of Mg(2+) can be achieved due to its ability to compete with Ca(2+) for the binding sites in a number of proteins responsible for the rise in intracellular free Ca(2+), including NCX1, in case when the reverse mode of Na(+)/Ca(2+) exchange becomes predominant. Saturation of CBD12 by Mg(2+) results in important changes of NCX1 conformation. Modulating actions of Mg(2+) on the conformation of NCX1 were detected at a narrow range of Mg(2+) concentration, from 0.5 to 1 mM. These data support an idea that variations of intracellular Mg(2+) could modify transmembrane Ca(2+) movements ensured by NCX1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.