Abstract

Phospho-tau accumulation and adult hippocampal neurogenesis (AHN) impairment both contribute importantly to the cognitive decline in Alzheimer's disease(AD), but whether and how tau dysregulates AHN in AD remain poorly understood. Here, we found a prominent accumulation of phosphorylated tau in GABAergic interneurons in the dentate gyrus (DG) of AD patients and mice. Specific overexpression of humantau (hTau) in mice DG interneurons induced AHN deficits but increased neural stem cell-derived astrogliosis, associating with a downregulation of GABA and hyperactivation of neighboring excitatory neurons. Chemogenetic inhibition of excitatory neurons or pharmacologically strengthening GABAergic tempos rescued the tau-induced AHN deficits and improved contextual cognition. These findings evidenced that intracellular accumulation of tau in GABAergic interneurons impairs AHN by suppressing GABAergic transmission and disinhibiting neural circuits within the neurogenic niche, suggesting a potential of GABAergic potentiators for pro-neurogenic or cell therapies of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.