Abstract
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.