Abstract

We study the asymptotic shape of the occupied region for an interacting lattice system proposed recently by Diaconis and Fulton. In this model particles are repeatedly dropped at the origin of the $d$-dimensional integers. Each successive particle then performs an independent simple random walk until it "sticks" at the first site not previously occupied. Our main theorem asserts that as the cluster of stuck particles grows, its shape approaches a Euclidean ball. The proof of this result involves Green's function asymptotics, duality and large deviation bounds. We also quantify the time scale of the model, establish close connections with a continuous-time variant and pose some challenging problems concerning more detailed aspects of the dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.