Abstract

In this study, the effect of pulsed electric field (PEF) on apparent morphology and molecular structure of shell-like ferritin obtained from horse spleen was determined by circular dichroic (CD), fluorescence spectroscopy, Raman spectroscopy, cold field emission scanning electron microscopy (CF-SEM) and transmission electron microscopy (TEM), and verified by molecule dynamics (MD) simulation. After PEF treatment, the α-helix content of the samples reached a minimum value at 10 kV/cm, which indicated that the ferritin structure has been partially unfolded. However, the α-helix content peaked again after resting for 2 h at 25 ± 1 °C. This indicated that the PEF-treated ferritin tended to restore its original spherical morphology probably owing to the reversible assembly characteristic of ferritin. In addition, microstructure analysis revealed that ferritin particles aggregated after PEF treatment. Therefore, PEF treatment could induce the “exposure” of hydrophobic amino acids and conversion of disulfide bond configuration, and consequently, regulate the internal cavity stability of ferritin. The research will be beneficial to expand the application of PEF treatment in the modification of protein structure, and provide a theoretical basis for the application of ferritin as a carrier of bioactive molecules in food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.