Abstract
We observed the low-frequency Raman-active intermolecular vibrational modes of 7-azaindole in CCl(4) by femtosecond Raman-induced Kerr effect spectroscopy. To understand the dynamical aspects and vibrational modes of 7-azaindole in the solution, the ultrafast dynamics of 1-benzofuran in CCl(4) was also examined as a reference and ab initio quantum chemistry calculations were performed for 7-azaindole and 1-benzofuran. The cooperative hydrogen-bonding vibrational bands of 7-azaindole dimer in CCl(4) appeared at 89 cm(-1) and 105 cm(-1) represent the overlap of stagger and wheeling modes and the intermolecular stretching mode, respectively. They are almost independent of the concentration in the solution. We further found from the low-frequency differential Kerr spectra of the solutions with neat CCl(4) that the intermolecular motion in the low frequency region below 20 cm(-1) was less active in the case of 7-azaindole/CCl(4) than in the case of 1-benzofuran/CCl(4). The slow orientational relaxation time in 7-azaindole/CCl(4) is ~3.5 times that in 1-benzofuran/CCl(4) because of the nature of the dimerization of 7-azaindole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.