Abstract

New molecular beam scattering experiments are reported for the ammonia-hydrogen system recording with unprecedented resolution "glory" quantum interferences in the total cross sections. Direct comparison with the analogous water-hydrogen complex, investigated under the same experimental conditions, highlights relevant differences in the intermolecular interaction affecting the observables. Analysis of the electronic charge displacement accompanying formation of both complexes, calculated using very accurate ab initio methods, helps to rationalize the experimental findings and unveils the selective and crucial role of charge transfer in driving water interactions and formation of a weak hydrogen bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.