Abstract

Intermolecular recombination in mammalian cells was studied by coinfecting African green monkey cells in culture with two shuttle vector plasmids, each carrying an incomplete but overlapping portion of the gene for neomycin resistance. The region of homology between the two plasmids was about 0.6 kilobases. Recombination between the homology regions could reconstruct the neomycin resistance gene, which was monitored by analysis of progeny plasmids in bacteria. The individual plasmids carried additional markers which, in combination with restriction analysis, allowed the determination of the frequency of formation of the heterodimeric plasmid which would be formed in a conservative recombination reaction between the homologous sequences. Reconstruction of the neomycin resistance gene was readily observed, but only 1 to 2% of the neomycin resistance plasmids had the structure of the conservative heterodimer. Treatment of the plasmids which enhanced the frequency of the neomycin resistance gene reconstruction reaction did not significantly increase the relative frequency of conservative product plasmids. The results support nonconservative models for recombination of these sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.