Abstract

We investigated the intermolecular dynamics and static structure in the aqueous solutions of lidocaine hydrochloride (LDHCl) in the concentration range of [LDHCl] = 0-2.00 M using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), small- and wide-angle X-ray scattering (SWAXS), and dynamic light scattering (DLS). For the fs-RIKES experiments, the concentration dependence of the difference low-frequency spectra of the aqueous LDHCl solutions relative to the neat water, which was mainly due to the intermolecular vibrations, was characterized using an exponential function with a characteristic concentration of ∼1 M. For the SWAXS experiments, we observed a manifestation of an excess scattering component centered within a range of 8-10 nm-1 in the aqueous LDHCl solutions. The results of Fourier inversion and further deconvolution analyses unambiguously demonstrated that lidocaines assemble into a nanometer-sized micelle-like structure with the innermost core (∼0.3 nm) and outer shell (∼0.5 nm), respectively. The DLS experiments also found nanometer-sized aggregates and further indicated evidence of the clusters of the aggregates. The results of viscosities, densities, and surface tensions of the solutions and the quantum chemistry calculations supported the unique features of the microscopic intermolecular interaction and the micelle-like aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.