Abstract
The flux-dependent evolution of vortex states in nanoscale superconducting noncircular systems is investigated based on the Bogoliubov-de Gennes theory. For a superconductor with the coherence length comparable to the Fermi wavelength, the spatial variations of the superconducting order parameter are very sensitive to the finite size of the sample. With increasing the applied flux, the superconducting state and the normal state can alternately appear in small squares, and a remarkable intermittent superconducting behavior for the ground-state transition is found. Moreover, when the square size is enlarged, the asymmetric single-vortex and multivortex states as well as the vortex-antivortex pairs can emerge as the metastable or ground states, arising from the effect of strong quantum confinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.