Abstract

Many fish and marine animals swim in a combination of active burst and passive coast phases, which is known as burst-and-coast swimming. The immersed boundary method was used to explore the intermittent locomotion of a three-dimensional self-propelled plate. The degree of intermittent locomotion can be defined in terms of the duty cycle (DC = Tb/Tf), which is the ratio of the interval of the burst phase (Tb) to the total flapping period (Tf = Tb + Tc), where Tc is the interval of the coast phase. The average cruising speed (ŪC), the input power (P¯), and the swimming efficiency (η) were determined as a function of the duty cycle (DC). The maximum ŪC arises for DC = 0.9, whereas the maximum η arises for DC = 0.3. The hydrodynamics of the intermittent locomotion was analyzed by examining the superimposed configurations of the plate and the phase map. The characteristics of the flapping motions in the burst and coast phases are discussed. A modal analysis was performed to examine the role of the flapping motion in the propulsion mechanism. The velocity map and the vortical structures are visualized to characterize qualitatively and quantitatively the influence of intermittent locomotion on propulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.