Abstract
Intermittent ischemia is known to promote post perfusion bile flow, and hence recovery of liver function following ischemia reperfusion of the liver. However, the mechanisms involved are not well understood. The aim of this study was to identify the step(s) in the bile acid transport pathway altered by intermittent ischemia. Arat model of segmental hepatic ischemia in which the bilateral median and left lateral lobes were made ischemic by clamping the blood vessels was used. Indocyanine green (ICG), infrared spectroscopy, and compartmental kinetic analysis, were used to indirectly monitor the movement of bile acids across hepatocytes in situ. Rates of bile flow were measured gravimetrically. In control livers (not subjected to ischemia), the movement of ICG from the blood to bile fluid could be described by a three compartment model comprising the blood, a rapidly-exchangeable compartment, and the hepatocyte cytoplasmic space. In livers subjected to continuous clamping, the rates of ICG uptake to the liver, and outflow from the liver, were greatly reduced compared with those in control livers. Intermittent clamping (three episodes of 15 min clamping) compared with continuous clamping substantially increased the rate of ICG uptake from the blood but had less effect on the rate of ICG outflow from hepatocytes. It is concluded that intermittent ischemia promotes post reperfusion bile flow in the early phase of ischemia reperfusion injury principally by enhancing the movement of bile acids from the blood to hepatocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.