Abstract

In this paper, intermittent chaotic analysis of high speed rail axle supported by roller bearings has been analyzed. In the analytical formulation, the contacts between rolling elements and races are considered as nonlinear springs, whose stiffness values are obtained by using Hertzian elastic contact deformation theory. The results show the appearance of instability and chaos in the dynamic response as the speed of the axle-bearing system is changed. Period doubling and mechanism of intermittency have been observed which lead to chaos. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly dependent on the radial clearance. Poincare´ maps, time response and frequency spectra are used to elucidate and to illustrate the diversity of the system behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.