Abstract
The present study examined the effects of the proinflammatory cytokine interleukin-18 (IL-18) on mouse hippocampal synaptic transmission. IL-18 (100 ng/ml) significantly increased amplitude and frequency of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated miniature excitatory postsynaptic currents (AMPA–mEPSCs), that are monitored from CA1 pyramidal neurons of mouse hippocampal slices. IL-18 (100 ng/ml) enhanced slope of basal field excitatory postsynaptic potentials (fEPSPs) that are recorded from the CA1 region of mouse hippocampal slices. There was no significant difference in the expression of Schaffer collateral/CA1 long-term potentiation (LTP) between in the presence and absence of IL-18, although IL-18 tended to inhibit saturation levels of the potentiation induced by tetanic stimulation in a dose-dependent manner at concentrations ranged from 10 ng/ml to 1 μg/ml. Paired-pulse facilitation in the presence of IL-18 (100 ng/ml) was not influenced after tetanic stimulation, while that in the absence of IL-18 was depressed. The results of the present study, thus, suggest that IL-18 stimulates synaptically released glutamate and enhances postsynaptic AMPA receptor responses in CA1 pyramidal neurons of mouse hippocampal slices, thereby facilitating basal hippocampal synaptic transmission without affecting the LTP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.