Abstract

Simple SummaryMetastasis is the main cause of death from breast cancer. In mouse models of breast cancer lung metastasis, macrophages enhance metastasis by promoting tumor cell seeding and persistent growth. Here, we show that interleukin-4 (IL4) is required for this process as IL4 receptor (IL4rα)-null mice develop fewer and smaller lung metastases. This deficiency is partially rescued by adoptive transfer of wild-type monocytes. IL4 signaling in macrophages upregulates the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. In addition, expression of several other genes already causally associated with lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1 are upregulated in macrophages. High-resolution intravital imaging at the time of metastatic seeding showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages, showing the dependence on IL4. We conclude that IL4 signaling in monocytes and macrophages is important during seeding and growth of breast metastasis in the lung.Metastasis is the systemic manifestation of cancer and the main cause of death from breast cancer. In mouse models of lung metastases, recruitment of classical monocytes from blood to the lung and their differentiation to metastasis-associated macrophages (MAMs) facilitate cancer cell extravasation, survival and growth. Ablation of MAMs or their monocytic progenitors inhibits metastasis. We hypothesized that factors controlling macrophage polarization modulate tumor cell extravasation in the lung. We evaluated whether signaling by Th1 or Th2 cytokines in macrophages affected transendothelial migration of tumor cells in vitro. Interferon gamma and LPS inhibited macrophage-dependent tumor cell extravasation while the Th2 cytokine interleukin-4 (IL4) enhanced this process. We demonstrated that IL4 receptor (IL4rα)-null mice developed fewer and smaller lung metastasis in E0771-LG mammary cancer models of this disease. Adoptive transfer of wild-type monocytes to IL4rα-deficient mice partially rescued this phenotype. IL4 signaling in macrophages controlled the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. Furthermore, IL4 signaling in macrophages regulated the transcript abundance of several other genes already causally associated with mammary cancer lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1. The central role of IL4 signaling in MAMs was confirmed by high-resolution intravital imaging of the lung in mice at the time of metastatic seeding, which showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages. This interaction with wild-type MAMs enhanced tumor cell survival and seeding, which was lost in the IL4rα mice. These data indicate that IL4 signaling in monocytes and macrophages is key during seeding and growth of breast metastasis in the lung, as it regulates pro-tumoral paracrine signaling between cancer cells and macrophages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call