Abstract

Two-dimensional (2D) perovskites for applications in photovoltaics and optoelectronics are attracting a great deal of research interest. The nonradiative electron-hole (e-h) recombination is the major efficiency loss channel. Herein, we report a study of the thickness dependence of the e-h recombination dynamics in diamine-based 2D perovskite via ab initio NAMD. For multilayer structures, due to the emergence of spontaneous interlayer electric polarization, which is induced by the collective and correlated reorientation of methylammonium molecules, the electron and hole at the band edges are localized in different inorganic layers, suppressing the e-h recombination. Furthermore, a broad range of phonon excitation also inspired rapid pure dephasing related to the microscopic origin for longer recombination times. The combination of the two effects leads to the observation of a prolonged carrier lifetime in multilayer 2D perovskites, which is essential to understanding the nonradiative e-h recombination mechanism in such materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.