Abstract

This paper proposes a discontinuous Galerkin method to solve the generalized Sobolev equation. In this numerical procedure, the temporal variable has been discretized by the Crank–Nicolson idea to get a time-discrete scheme with the second-order accuracy. Then, in the second stage the spatial variable has been discretized by the discontinuous Galerkin finite element method. A prior error estimate has been proposed for the semi-discrete scheme based on the spatial discretization. By applying the Crank–Nicolson idea a full-discrete scheme is driven. Furthermore, an error estimate has been proved to get the convergence order of the developed scheme. Finally, some numerical examples have been presented to show the efficiency and theoretical results of the new numerical procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.