Abstract
Mental fatigue is often associated with continuous brain activities in our daily life. It can diminish efficiency and increase errors. However, the related physiological features are still not clear and under exploration. The present study investigated changes of inter-hemispheric synchronization in event-related potentials (ERPs) due to mental fatigue during sustained memory processing. Twenty-six participants performed a continuous two-back memory task for around 2.5h. Prefrontal and frontal synchronies in the alpha frequency band (8-13Hz) were analyzed because of their close relationships with memory functions. Coherence was used to examine bilateral synchronization changes of ERP power and phase. We compared ERP coherences in both non-fatigued and fatigued states. We also observed the variation of ERP coherences during the continuous task. High overlaps of inter-hemispheric ERP waveforms were observed at prefrontal and frontal cortex in both non-fatigued and fatigued conditions. During the whole experimental procedure, ERP alpha coherences at frontal regions (FP1-FP2 and F3-F4) were significantly higher than at central (C3-C4), parietal (P3-P4) and occipital (O1-O2) regions. Alpha synchronization in anterior electrode pairs showed significant declines with increasing mental fatigue during the memory task. Our findings about changes in frontal ERP alpha synchronization might be used as biomarkers to assess mental fatigue induced by prolonged memory demands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.