Abstract

Mx proteins are interferon-induced GTPases that belong to the dynamin superfamily of large GTPases. Similarities include a high molecular weight, a propensity to self-assemble, a relatively low affinity for GTP, and a high intrinsic rate of GTP hydrolysis. A unique property of Mx GTPases is their antiviral activity against a wide range of RNA viruses, including bunya- and orthomyxoviruses. The human MxA GTPase accumulates in the cytoplasm of interferon-treated cells, partly associating with the endoplasmic reticulum. In the case of bunyaviruses, MxA interferes with transport of the viral nucleocapsid protein (N) to the Golgi compartment, the site of virus assembly. In the case of Thogoto virus (an orthomyxovirus), MxA prevents the incoming viral nucleocapsids from being transported into the nucleus, the site of viral transcription and replication. In both cases, the GTP-binding and carboxy-terminal effector functions of MxA are required for target recognition. In general, Mx GTPases appear to detect viral infection by sensing nucleocapsid-like structures. As a consequence, these viral components are trapped and sorted to locations where they become unavailable for the generation of new virus particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.