Abstract

Increasingly complex proteins can be made by a recombinant chemical approach where proteins that can be made easily can be combined by site-specific chemical conjugation to form multifunctional or more active protein therapeutics. Protein dimers may display increased avidity for cell surface receptors. The increased size of protein dimers may also increase circulation times. Cytokines bind to cell surface receptors that dimerise, so much of the solvent accessible surface of a cytokine is involved in binding to its target. Interferon (IFN) homo-dimers (IFN-PEG-IFN) were prepared by two methods: site-specific bis-alkylation conjugation of PEG to the two thiols of a native disulphide or to two imidazoles on a histidine tag of two His8-tagged IFN (His8IFN). Several control conjugates were also prepared to assess the relative activity of these IFN homo-dimers. The His8IFN-PEG20-His8IFN obtained by histidine-specific conjugation displayed marginally greater in vitro antiviral activity compared to the IFN-PEG20-IFN homo-dimer obtained by disulphide re-bridging conjugation. This result is consistent with previous observations in which enhanced retention of activity was made possible by conjugation to an N-terminal His-tag on the IFN. Comparison of the antiviral and antiproliferative activities of the two IFN homo-dimers prepared by disulphide re-bridging conjugation indicated that IFN-PEG10-IFN was more biologically active than IFN-PEG20-IFN. This result suggests that the size of PEG may influence the antiviral activity of IFN-PEG-IFN homo-dimers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.