Abstract

The laser plasma formed in gaseous media due to their optical breakdown under tightly focused femtosecond laser pulses has been experimentally investigated. Pump-probemicrointerferometry is chosen to perform spatial and temporal diagnostics of the plasma. Time dependences of the laser plasma electron density are obtained. It is shown that in breakdown of different gases (air, nitrogen, argon, and helium) at different pressures (in the range from 1 to 10 atm) the electron concentration continues to increase during ∼1 ps when the laser irradiation is over. This effect is related to the impact ionization of the plasma by the hot electrons formed in interaction of intense femtosecond laser pulses with matter. The results of theoretical simulation of the post-ionization processes are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.