Abstract

We report an interferometric analysis of 0.5mm thick lithium niobate crystal sample by making use of a reflective grating interferometer and a digital holographic technique. The lithium niobate wafer was subjected to electric field poling in order to obtain two antiparallel ferroelectric domains. The crystal was then mounted into one arm of the interferometer in order to study the phase map and consequently to evaluate the effects of domain reversion at the boundary. Engineering of periodically reversed domains in LN is extensively used for quasi-phase-matching applications while the ferroelectric structure investigated here is suitable for producing electro-optically controlled deflector or switch devices via total internal reflection at the domain interface. The above mentioned applications require deep knowledge of how the domain reversal process affects the optical properties of the ferroelectric crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.