Abstract

The use of small cells serviced by low-power base stations such as femtocells is envisioned to improve the spectrum efficiency and the coverage of next-generation mobile wireless networks. However, one of the major challenges in femtocell deployments is managing interference. In this paper, we propose a novel cooperative solution that enables femtocells to improve their achievable data rates, by suppressing intratier interference using the concept of interference alignment (IA). We model this cooperative behavior among the femtocells as a coalitional game in partition form and we propose a distributed algorithm for the coalition formation. The proposed algorithm allows the femtocell base stations to independently decide on whether to cooperate or not, while maximizing a utility function capturing both the gains and costs from cooperation. Using the proposed algorithm, the femtocells can self-organize into a stable network partition composed of disjoint femtocell coalitions and which constitutes the recursive core of the game. Inside every coalition, cooperative femtocells use advanced IA techniques to improve their downlink transmission rate. Simulation results show that the proposed coalition formation algorithm yields significant gains, in terms of average payoff per femtocell, reaching up to 30 percent relative to the noncooperative case for a network of N=300 femtocells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.