Abstract

Two dimensional flow of a layer of constant density fluid over arbitrary topography, beneath a compressible, isothermal and stationary fluid is considered. Both downstream wave and critical flow solutions are obtained using a boundary integral formulation which is solved numerically by Newton's method. The resulting solutions are compared against waves produced behind similar obstacles in which the compressible upper layer is absent (single layer flow) and against the predictions of a linearised theory. The limiting waves predicted by the full non-linear equations are contrasted with those predicted by the forced Korteweg-de Vries theory. In particular, it is shown that at some parameter values a multiplicity of solutions exists in the full nonlinear theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.