Abstract
Accurate and useful analytic approximations are developed for order parameter profiles and interfacial tensions of phase-separated binary mixtures of Bose–Einstein condensates. The pure condensates 1 and 2, each of which contains a particular species of atoms, feature healing lengths ξ1 and ξ2. The inter-atomic interactions are repulsive. In particular, the reduced inter-species repulsive interaction strength is K. A triple-parabola approximation (TPA) is proposed, to represent closely the energy density featured in Gross–Pitaevskii (GP) theory. This TPA allows us to define a model, which is a handy alternative to the full GP theory, while still possessing a simple analytic solution. The TPA offers a significant improvement over the recently introduced double-parabola approximation (DPA). In particular, a more accurate amplitude for the wall energy (of a single condensate) is derived and, importantly, a more correct expression for the interfacial tension (of two condensates) is obtained, which describes better its dependence on K in the strong segregation regime, while also the interface profiles undergo a qualitative improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.