Abstract
To study interfacial particle-to-particle bonding mechanisms, an ultrathin film of pyrrole was deposited on alumina nanoparticles using a plasma polymerization treatment. High resolution transmission electron microscopy experiments showed that an extremely thin film of the pyrrole layer (2 nm) was uniformly deposited on the surfaces of the nanoparticles. In particular, the particles of all sizes (10–150 nm) exhibited equally uniform ultrathin films indicating well-dispersed nanoparticles in the fluidized bed during the plasma treatment. Time-of-flight secondary ion mass spectroscopy experiments confirmed the nano-surface deposition of the pyrrole films on the nanoparticles. The pyrrole-coated nanoparticles were consolidated at a temperature range (approximately 250 °C) much lower than the conventional sintering temperature. The density of consolidated bulk alumina has reached about 95% of the theoretical density of alumina with only a few percent of polymer in the matrix. After low-temperature consolidation, the micro-hardness test was performed on the bulk samples to study the strength that was related to particle-particle adhesion. The underlying adhesion mechanism for bonding of the nanoparticles is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.