Abstract
AbstractDroplet evaporative crystallization on microscale heterogeneous surface is a vivid topic in chemical engineering, bioengineering, nanomaterials, and so on. Here, 3D printed interfacial matrix platform with regular pillar convexity and tunnel structure is fabricated to reveal the mechanism of the interfacial micro droplet crystallization. Element‐based rotation volume model is established to simulate the concentration and nucleation barrier distribution during the microscale process. Sodium urate monohydrate and NaCl crystallization on the pillar convex structure both confirm that confined capillary flow in the micro droplet and initial nucleation condition dominate the nucleation, growth control and particle distribution. Droplet crystallization stretches over the tunnel structure reveal an interesting phenomenon that two regions possessing distinct‐different nucleation barriers can isolated obtain the crystal particles from nanoscale to even millimeter scale. The fabricated platform and the capillary circulation transfer theory unfold a potential approach to harvest high value‐added crystals with specific morphology and desire sizes distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.