Abstract

The utilization of long-chain fluorocarbon surfactants is restricted due to environmental regulations, prompting a shift in the focus of research towards short-chain fluorocarbon surfactants. The present study employs molecular dynamics techniques to model the behaviour of potassium perfluorobutylsulfonate (PFBS) at the n-hexane/water interface, aiming to investigate the efficacy of short-chain fluorocarbon surfactants in enhancing oil recovery. The findings suggest that ionized PFBS- has the ability to autonomously migrate to the oil/water interface, forming a layered thin film, with the sulfonic acid group being submerged in water, while the fluorocarbon chain is oriented towards the oil phase. This phenomenon aligns with the fundamental concept of surfactants in reducing interfacial tension between oil and water. The spontaneous dispersion process is supported by changes in the number of water molecules surrounding each PFBS- anion, as is well indicated by the number density distribution within the simulation box. Based on the analysis conducted by IGMH (Independent Gradient Model based on Hirshfeld partition), it was determined that sulfonic acid molecules are capable of forming hydrogen bonds with water molecules, whereas the interaction between fluorocarbon chains and the oil phase is predominantly characterized by weak van der Waals interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.