Abstract

Symmetric transition metal complexes of 2,4-pentanedione (acetyl acetone) are interfacially active: Spinning drop tensiometry reveals lowering of the interfacial tension at the water-organic interface, most pronounced for [Cr(acac)(3)], [Fe(acac)(3)], [Zr(acac)(4)], and [Hf(acac)(4)]. The interfacial activity is explained by the in situ generation of amphiphilic species. Based on tensiometry and (1)H and diffusion-ordered NMR spectroscopy (DOSY NMR), hydrogen bonding of the organically dissolved complexes with water, in some cases in combination with inner-sphere hydrolytic coordination, is identified as the primary origin of this amphiphilicity. The complexes are a rare example of symmetric molecules that turn amphiphilic only upon interfacial interaction with water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.