Abstract

Safety and security are major concerns in the development of Cyber-Physical Systems (CPS). Signal temporal logic (STL) was proposed as a language to specify and monitor the correctness of CPS relative to formalized requirements. Incorporating STL into a development process enables designers to automatically monitor and diagnose traces, compute robustness estimates based on requirements, and perform requirement falsification, leading to productivity gains in verification and validation activities; however, in its current form STL is agnostic to the input/output classification of signals, and this negatively impacts the relevance of the analysis results.In this paper we propose to make the interface explicit in the STL language by introducing input/output signal declarations. We then define new measures of input vacuity and output robustness that better reflect the nature of the system and the specification intent. The resulting framework, which we call interface-aware signal temporal logic (IA-STL), aids verification and validation activities. We demonstrate the benefits of IA-STL on several CPS analysis activities: (1) robustness-driven sensitivity analysis, (2) falsification and (3) fault localization. We describe an implementation of our enhancement to STL and associated notions of robustness and vacuity in a prototype extension of Breach, a MATLAB®/Simulink® toolbox for CPS verification and validation. We explore these methodological improvements and evaluate our results on two examples from the automotive domain: a benchmark powertrain control system and a hydrogen fuel cell system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.