Abstract

The growth of GaSb thin films by MBE on GaAs (001) is investigated experimentally, using TEM, and theoretically, using KMC simulations. The atomic scale mechanisms inherent to the growth are discussed and described in the KMC model in which the strain is introduced through an elastic energy term based on a valence force field approximation. We observe that the first two monolayers of the deposited films form strained three-dimensional clusters, but further deposition induces film relaxation and rough 3D growth with valley formation presenting (111) facets with unstable bottoms. We show that the roughening morphology and creation of grooves during growth are in agreement with experimental TEM observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.