Abstract

The transport properties of core–shell nanowires (CSNWs) under interface modulation and confinement are investigated based on the atomic-bond-relaxation (ABR) correlation mechanism and Fermi’s golden rule. An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size, shell thickness and alloyed layer on effective mass, band structures, and deformation potential constant are studied. It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment, but also participate in the carrier transport for enhancing mobility. Moreover, the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified. The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.