Abstract

Ionotropic glutamate receptors from the AMPA and kainate subfamilies share many functional and structural features, but it is unclear whether this similarity extends to the molecular mechanisms underlying receptor desensitization. The current model for desensitization in AMPA receptors involves the rearrangement of dimers formed between subunit agonist binding domains. Key evidence for this has come from a single point mutant (from leucine to tyrosine) that abolished desensitization and that was shown to stabilize the binding domain dimer. However, the desensitization of kainate receptors appears to differ from that of AMPA receptors in several key respects. Although the kinetics of AMPA receptor gating and desensitization are consistent with channels formed from two dimers, similar evidence for the functional involvement of dimers has not been found in kainate receptors. Furthermore, despite the homolog of the nondesensitizing tyrosine in AMPA subunits also being a tyrosine in wild-type kainate subunits, these receptors desensitize rapidly and completely. Using mutagenesis based on the crystal structure of the glutamate receptor subunit GluR6 S1S2 domain in complex with domoate, we identified four residues neighboring this tyrosine that differ between AMPA and kainate subunits and that contribute to the different desensitization kinetics of these receptors. Detailed analysis of the effects of mutations at these sites confirms that there is in fact a common general mechanism for desensitization in non-NMDA receptors, dependent on the stability of the binding domain dimer interface, and reveals the existence of potential agonist-specific desensitization pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.