Abstract

Green composites recently have attracted the attention of the researchers due to the advantages of low cost, renewable resource usage and biodegradability. In general, natural fibers being highly polar and hydrophilic have low interfacial shear strength (IFSS) with polymer matrix which is nonpolar and relatively hydrophobic in nature. The surface modification of natural fiber is necessary to improve the fiber/polymer compatibility and their interfacial adhesion. Natural fibers without surface modification embedded in a polymeric matrix generate unstable interfaces and the stress applied to the fiber/polymer composite is not efficiently transferred from the matrix to the fiber. Thus the beneficial reinforcement effect of the fiber remains under exploited. Among the available biopolymer, polylactic acid (PLA) is the most established biodegradable polymer. Surprisingly jute is the second most widely used natural fiber for reinforcing polylactide. Several chemical and physical treatments are performed to improve the fiber–matrix adhesion by reducing the difference between hydrophilic/hydrophobic characters of jute fiber and PLA matrix. Conventional chemical modification methods are alkalization, acetylation and bleaching. These methods are more frequently used due to their relative simplicity, low cost and efficiency. Permanganate treatment, silane treatment, peroxide treatment, shellac resin treatment are also commonly used as chemical treatments. However physical treatments such as plasma treatments, corona discharge treatments, UV treatments etc. are reported as more eco-friendly than chemical treatments. In this chapter a brief summary of all physical and chemical treatments of jute fiber reinforced PLA composites has been presented and the resulted mechanical properties are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.