Abstract

AbstractIntroducing dielectric materials is a promising approach to mitigate space‐charge‐layer (SCL) formation, which negatively affects the electrochemical performance of sulfide‐based all‐solid‐state batteries (ASSBs). Most previous studies have focused on mitigating SCL formation by introducing dielectric materials, overlooking the fact that significant dielectric properties such as the dipole moment direction and the magnitude of the dielectric constant can influence SCL formation. To clarify the unclear mechanism of dielectric materials mitigating SCL formation, paraelectricity, ferroelectricity, and the magnitude of the dielectric constant are investigated to determine their effect on SCL formation. Paraelectric materials possessing no permanent dipole moment can effectively mitigate the SCL formation better than ferroelectric material with strong permanent dipole moment because of the intrinsic characteristics of the paraelectric material, in which the dipole moment can be aligned along the direction of the electric field applied inside of ASSB. Furthermore, paraelectric materials with a larger dielectric constant have a greater effect in mitigating SCL effect than paraelectric materials with a smaller dielectric constant. Thus, these properties should be considered in cathode‐solid‐electrolyte interface design. This study considers relevant dielectric material characteristics that had not been considered previously, suggesting a new paradigm for optimizing the interfacial resistance of sulfide‐based ASSBs originating from SCL formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.