Abstract

Novel Nextel™ 440 aluminosilicate fiber reinforced SiC matrix composites, with/without chemical vapor deposited carbon interphase were fabricated by polymer derived ceramic process, and they were studied by a combination of micro- and macro- mechanical techniques such as nanoindentation, micropillar splitting, fiber push-in, digital image correction and high temperature three point bend tests. Specifically, micropillar splitting test was firstly employed to measure in-situ the localized fracture toughness. The results revealed that the carbon interphase can effectively hinder the interfacial reactions between Nextel™ 440 fiber and SiC matrix, thus remarkably weakening the composite interfacial shear strength from ∼293MPa to ∼42MPa, and enhance the composite fracture toughness from ∼1.8MPa√m to ∼6.3MPa√m, respectively. This is mainly a consequence of weak interface that triggers crack deflection at the fiber/interphase interface. Finally, this novel composite showed stable mechanical properties in vacuum at temperature range from 25°C to 1000°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.