Abstract

Linkers in polyproteins are considered as mere spacers between two adjacent domains. However, a series of studies using single-molecule force spectroscopy have recently reported distinct thermodynamic stability of I27 in polyproteins with varying linkers and indicated the vital role of linkers in domain stability. A flexible glycine rich linker (-(GGG)n, n ≥ 3) featured unfolding at lower forces than the regularly used arg-ser (RS) based linker. Interdomain interactions among I27 domains in Gly-rich linkers were suggested to lead to reduced domain stability. However, the negative impact of inter domain interactions on domain stability is thermodynamically counter-intuitive and demanded thorough investigations. Here, using an array of ensemble equilibrium experiments and in-silico measurements with I27 singlet and doublets with two aforementioned linkers, we delineate that the inter-domain interactions in fact raise the stability of the polyprotein with RS linker. More surprisingly, a highly flexible Gly-rich linker has no interference on the stability of polyprotein. Overall, we conclude that flexible linkers are preferred in a polyprotein for maintaining domain’s independence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.