Abstract

Previous studies have found that signaling by the estrogen receptor-beta (Er-beta) attenuated solar-simulated UV radiation (SSUV)-induced immunosuppression. This study seeks evidence for a common mechanism for this immunoprotection for both Er-beta signaling and irradiation with the UVA waveband. In Skh:hr-1 hairless mice, the immunoprotection afforded by UVA exposure against subsequent UVB or cis-urocanic acid suppression of contact hypersensitivity (CHS) was abrogated by treatment with the antiestrogen, ICI 182,780. Furthermore, in normal C57BL mice, UVA enrichment of UVA/UVB sources provided protection against UVB-suppressed CHS and upregulated epidermal IL-10 expression, but this protection was inhibited in Er-beta-/- mice. These observations indicated that the immunoprotective response to UVA was dependent on Er-beta signaling. As earlier studies have established that UVA photoimmune protection depends on the induction of the stress enzyme, heme oxygenase (HO)-1, its activity was examined relative to Er-beta. Immunoprotection against SSUV by 17-beta-estradiol was prevented by inhibiting HO enzyme activity; immunoprotection against cis-urocanic acid by carbon monoxide (HO product) was prevented by ICI 182,780. In addition, the HO-1 gene was unresponsive to UVA induction in Er-beta-/- mice. Therefore, HO-1 inducibility and Er-beta signaling are interdependent requisite responses to the UVA waveband for its immunoprotective action against UVB exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.