Abstract

We hypothesized that tree-based intercropping in southwestern Quebec, Canada, would stimulate soil microbial activity and increase soil nutrient supply, thereby benefiting the growth of trees. Our experimental design comprised alternating rows of hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry) and high-value hardwood species spaced 8 m apart, between which two alley treatments were applied 5–6 years after planting the trees. The first alley treatment consisted of a fertilized soybean (Glycine max (L.) Merr.) intercrop grown over two consecutive years, while the second consisted of repeatedly harrowing to minimize vegetation in the alley. Tree rows were mulched with a 1.5 m wide polythene mulch. Microbial respiration and biomass, and mineral N concentrations and mineralization rates were measured on five or six dates at 0, 2 and 5 m from hybrid poplar rows. On some of the sampling dates, we found significantly higher soil microbial biomass, mineral N concentrations and nitrification rates, and a significantly lower microbial metabolic quotient (qCO2), in the soybean intercropping than in the harrowing treatment. Over the 2 year period, hybrid poplar biomass increment and N response efficiency (NRE) were significantly higher (51 and 47%, respectively) in the intercropping than in the harrowing treatment. Microbial biomass and mineral N supply were significantly lower beneath the polyethylene mulch than in the alleys, and we posit that this may stimulate the growth of tree roots into the alley. We conclude that soybean intercropping improves nutrient turnover and supply for hybrid poplar trees, thereby increasing the land equivalent ratio (LER).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.