Abstract
Theoretical and experimental approaches to diagnosing internal spin and orbital optical flows and the corresponding optical forces caused by these flows are offered. These approaches are based on the investigation of the motion of the particles tested in the formed optical field. The dependence of the above-mentioned forces upon the size and optical properties of the particles is demonstrated. The possibility of using kinematic values defining the motion dynamics of particles of the Rayleigh light scattering mechanism to make a quantitative assessment of the degree of coherence of mutually orthogonal waves that are linearly polarized in the incidence plane is demonstrated. The feasibility of using the above mentioned approach, its shortcomings, and its advantages over the interfering method for estimating the degree of coherence are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.