Abstract

AbstractSteering motion bestows autonomous underwater vehicles (AUVs) with the agility to navigate intricate paths and trajectories precisely. Ensuring effective steering position stabilization in underwater vehicles is paramount, as it enables precise navigation and enhances safety, efficiency, data accuracy, adaptability to changing conditions, and the overall success of diverse underwater missions. This article addresses the challenging task of steering position stabilization in underactuated AUVs. To achieve this, we employ an interconnection and damping assignment passivity‐based control method to design a control law tailored for steering position stabilization. Our approach considers the nonlinear dynamics of a six‐degrees‐of‐freedom steering motion in AUVs. The control objective involves assigning a suitable energy function and reshaping the interconnection and damping structure to render the closed‐loop system asymptotically stable at the desired equilibrium point. The robustness of our proposed control law is assessed rigorously, subjecting it to modeling uncertainties and underwater disturbances. Our findings are substantiated with simulation results that support the efficacy of the designed control law. Notably, we base our simulations on experimentally validated steering motion parameters obtained from the REMUS 100 AUV, enhancing the real‐world applicability of our research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.