Abstract

Picosecond-domain laser treatment using a microlens array (MLA) or a diffractive optical element (DOE) generates micro-injury zones in the epidermis and upper dermis. To investigate interactive tissue reactions between MLA-type picosecond laser pulses and cohesive polydensified matrix hyaluronic acid (CPMHA) filler in the dermis. In vivo rats with or without CPMHA pretreatment were treated with a 1064-nm picosecond-domain neodymium:yttrium-aluminum-garnet (Nd:YAG) laser using an MLA or DOE. Skin samples were obtained at post-treatment days 1, 10, and 21 and histologically and immunohistochemically analyzed. Picosecond-domain Nd:YAG laser treatment with an MLA-type or a DOE-type handpiece generated fractionated zones of pseudo-cystic cavitation along the lower epidermis and/or upper papillary dermis at Day 1. At Day 21, epidermal thickness, dermal fibroblasts, and collagen fibers had increased. Compared to CPMHA-untreated rats, rats pretreated with CPMHA showed marked increases in fibroblasts and collagen fibers in the papillary dermis. Immunohistochemical staining for the hyaluronic acid receptor CD44 revealed that MLA-type picosecond laser treatment upregulated CD44 expression in the basilar epidermis and dermal fibroblasts. We suggest that the hyaluronic acid-rich environment associated with CPMHA treatment may enhance MLA-type picosecond-domain laser-induced tissue reactions in the epidermis and upper dermis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.