Abstract

Possibility of human exposure to microplastics (MPs) in water environment has been escalating, and subsequent challenges of MPs to biostability and biosafety in drinking water deserve more attention, especially in stagnant water. The present study explored the integrated impacts of MPs and chlorine on disinfection kinetics, microbial growth, and microbial community formation in drinking water, by setting MPs or microplastic-biofilm (MP-BM) under different disinfection conditions. The following were the primary conclusions: (1) The presence of MP and MP-BM led to the deterioration of water indices (especially turbidity) when chlorine was less than 1 mg/L. (2) MP/MP-BM accelerated the decay of disinfectants and MP-BM consumed more rapidly. Meanwhile, chlorine contributed to the level of BRP, ranging from 4.78 × 105 CFU/mL to 1.42 × 107 CFU/mL. (3) MP/MP-BM and chlorine integrally shaped microbial communities in water samples and biofilm samples. Microbial dissimilarity between isolated and hybrid MP-BM indicated manners of microbial field or non-contact communication. Microbial abundance and OPs were effectively controlled when chlorine was over 1 mg/L. (4) According to time-lag differential equations simulation, impulsive chlorination contributed to controlling microbial risks and DBPs induced by MP/MP-BM and water stagnation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.