Abstract

The current study was performed to investigate the impact of different temperatures and protein levels on the growth performance, proximate compositionand digestive and hepatic enzyme activities of Labeo rohita fingerlings. For this purpose, healthy fingerlings (average initial weight of 6.40 ± 0.02 g) were acclimatized for 15 days, then reared at three temperatures (25°C, 30°Cand 35°C) and fed three levels of crude protein (25%, 30%and 35% crude protein (CP)) twice daily until satiation for 60 days. The results of the study revealed that the highest growth performance was observed in fish fed 35% protein and reared at 30°C. Similarly, fish reared at 35°C and 25°C water temperature showed comparatively better growth performance in fish fed with 35% protein. Furthermore, a significant enhancement in feed intake was observed with increasing culture temperature and increasing CP levels, but at 25°C, increasing CP levels significantly decreased the feed intake. Sligh variations were also observed in proximate composition in terms of moisture, CP, crude fat (CF)and ash contents in fish fed with different CP levels and reared at different temperatures. The hepatosomatic index and viscerosomatic index decreased significantly with increasing levels of protein and temperature. Amylase activities were significantly reduced with increasing culture temperature at each protein level. Increasing culture temperature did not affected the lipase activities. However, lipase activities were enhanced with increasing CP levels at 25°C and activities decreased with increasing CP levels at 30-35°C. Protease activity was enhanced with increasing temperature and CP levels. Significant increases were also observed in serum total proteins and liver functioning enzymes such as alkaline phosphatase, alanine aminotransferaseand aspartate aminotransferasein response to increased temperature, and protein had a reciprocal effect. It is concluded that increasing the CP levels increased the growth performance independent of temperature. However, similar growth performance at 30 CP (30°C) and 35 CP (35°C) indicates that L. rohita requires more protein at higher temperature for optimum growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.