Abstract
Disturbances such as fire, grazing, and soil mixing by animals interact to shape vegetation in grassland ecosystems. Animal-generated disturbances are unique in that they arise from a suite of behaviors that are themselves subject to modification by external factors. The manner in which co-occurring animal taxa interact to alter vegetation is a function of their respective behaviors, which shape the characteristics (e.g., the magnitude or extent) of their disturbances. To determine whether prairie dogs (Cynomys ludovicianus) and harvester ants (Pogonomyrmex occidentalis) interactively alter vegetation structure and heterogeneity on the Colorado shortgrass steppe, we characterized the size, dispersion, and vegetation of prairie dog burrow mounds and ant nests (located on and off prairie dog colonies) and vegetation growing beyond mound and nest perimeters. Ants located on prairie dog colonies engineered significantly larger nests and disturbed nearly twice as much total soil area as their off-colony counterparts. Ant nests were overdispersed both on and off prairie dog colonies, while prairie dog mounds were randomly dispersed. Where harvester ants and prairie dogs co-occur, the overdispersed pattern of on-colony ant nests is in effect "overlaid" onto the random pattern of prairie dog mounds, resulting in a unique, aggregated pattern of soil disturbance. Ant nests on prairie dog colonies had significantly less vegetation and lower plant species diversity than did prairie dog mounds, while off-colony nests were similar to mounds. These results suggest that ant nests are more highly disturbed when located on prairie dog colonies. Beyond nests proper, ants did not appear to alter vegetation in a manner distinct from prairie dogs. As such, the interactive effects of prairie dogs and ants on vegetation arise mainly from the disturbance characteristics of mounds and nests proper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.