Abstract
In this paper we present an interactive global illumination method for Direct Volume Rendering (DVR) based on the many-light approach, a class of global illumination methods which gained much interest recently. We extend these methods to handle transfer function and volume density updates efficiently in order to foster ability of interactive volume exploration. Global illumination techniques accounting for all light transport phenomena are typically computationally too expensive for interactive DVR. Many-light methods represent the light transport in a volume by determining a set of virtual light sources whose direct illumination and single scattering to a view ray approximate full global illumination. Our technique reduces computation caused by transfer function changes by recomputing the contribution of these virtual lights, and rescaling or progressively updating their volumetric shadow maps and locations. We discuss these optimizations in the context of DVR and demonstrate their application to interactive rendering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.