Abstract

Fluoro alcohols present in aqueous solutions can alter the dominant conformations of peptides and proteins. The origins of these effects likely are related to the details of solute-fluoro alcohol interactions. Preferential interaction of the fluoro alcohol component of a fluoro alcohol-water mixture with peptide solutes has been demonstrated by several experimental approaches. In the present work, we have used 1H{19F} intermolecular NOE experiments to examine interactions of hexafluoro-2-propanol in a 30% fluoro alcohol-50 mM phosphate buffer solvent mixture with the "Trp-cage" peptide (NLY IQW LKD GGP SSG RPP PS). The results show that the peptide is selectively solvated by hexafluoro-2-propanol to the extent that the fluoro alcohol concentration near the peptide may be 3 to 4 times higher than the nominal concentration of fluoro alcohol in the bulk sample. The observed NOEs indicate that peptide-fluoro alcohol interactions persist for times of the order of 1 ns at 5 degrees C. As the sample temperature is increased, the lifetimes of fluoro alcohol interactions with several exposed side chains decrease to the extent that the peptide hydrogen-solvent fluorine interactions appear to become diffusive in nature, with interaction lifetimes of approximately 0.03 ns. It is known that protein molecules can provide specific sites for binding small organic solvent molecules. Our work suggests that small peptides also have this ability and that the dynamics for such interactions can be site-specific.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.