Abstract

ABSTRACT An experimental and theoretical study of the impact of NO, NO2 and H2O on CO oxidation has been carried out. The experiments were performed in an isothermal quartz flow reactor at atmospheric pressure in the temperature range 800-1400 K. Inlet concentrations of NO and NO2 were 0-1 % (vol) and 0-622 ppmv, respectively, while the water vapor level was varied in the ranges 1-32% (NO absent) and 1-10% (NO present). The results show that the concentration of water vapor has a strong effect on the CO oxidation process, partly because it controls the O/OH ratio of the radical pool, and partly due to the high efficiency of H2O in promoting H + O2 recombination, which causes a strong inhibition of CO oxidation at high levels. Presence of NO and NO2 has a significant impact on moist CO oxidation, In low concentrations NO enhances CO consumption in the 900-1100 K range by converting HO2 to OH. In higher concentrations NO may catalyze recombination of radicals, thereby inhibiting the CO oxidation. The overal...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.