Abstract
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.