Abstract

At the ecological level, the effects of the facultative root hemiparasite Rhinanthus minor on the structure and functioning of its host communities are relative well described; yet until recently, the mechanistic basis for parasitic plant-driven community change and the physiological basis for the host-parasite interaction were poorly understood. Empirical incremental flow models, based on the increase in water, mineral nutrients, carbon assimilates or phytohormones between two defined time points, have been successfully employed to investigate the physiology of resource acquisition by- and distribution within host-parasitic plant associations. In this study we review the application of these empirical flow models to Rhinanthus-host associations showing the extent of and physiological basis of resource abstraction from the host and how this is profoundly influenced by soil nutrient status. We show that Rhinanthus primarily abstracts water and mineral nutrients via the apoplastic pathway through direct lumen-lumen connections with little resource acquisition via symplastic pathways. Nutrient status of the soil is shown to significantly influence the resource acquisition. We also investigate the hormonal regulation of resource acquisition by Rhinanthus showing pivotal roles for the key for the phytohormones abscisic acid (ABA) and cytokinins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.